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Abstract—Water boundary detection is an essential component
in coastal research, especially in the fields of ocean engineering
and oceanography. Detecting the boundary between water and
land on coasts gives insight into the tidal patterns of the ocean.
The task has inherent difficulties due to changing weather
patterns and light levels over the water, leading to different
colors of water in images. Similarly, drone imagery has a large
volume of data without proper labelling, resulting in significant
time delays and human intervention to accomplish the task.
In this paper, a semi-supervised model using drone imagery is
proposed to minimize the level of human interaction and increase
the accuracy of water boundary detection. Experimental analysis
on k-means clustering, k-nearest neighbors classification, logistic
regression, support vector machine classification, and c-support
vector machine classification are presented.

I. INTRODUCTION

The task of determining water boundaries presents a chal-
lenging task in coastline research. Specifically, determining
the specific boundary between land and water in a tidal
environment is difficult, as the tide fluctuates the water line
with time and can extend onto the land. Coastal boundary
detection has significant applications such as developing a
Digital Elevation Model (DEM), environmental surveillance,
urban planning and ecological Research. Historically, water
boundary detection was done through the manual effort of
cropping images accordingly [1]. With current advancements
in machine learning and deep learning, this task can be auto-
mated with supervised machine learning models that require
large quantities of labeled data, which makes the computational
requirements expensive.

To address the growing need of large volumes of labelled
data, semi-supervised approaches were developed, where only
a selection of the data requires labels [2]. These approaches
have been applied to a variety of topics including wireless
security [3] and ice-water classification [4]. Ultimately, this
approach to data supervision dramatically reduces the amount
of human time spent labelling these datasets. In extension of
this, models aimed to specifically generate labels on data have
grown in popularity [5]. Typically, these models rely on a
statistical correlation existing within the data, thereby creating
well-defined regions associated with each class. However,
semi-supervised autolabellers address can address overlapping
data through manually labelling boundary data with human
supervision [6]. These models can be paired with supervised
machine learning techniques, resulting in powerful models that

rely on minimal human interaction.

In water boundary detection, image segmentation is the
primary methodology utilized by machine learning and deep
learning models [7]. This approach splits the image into re-
gions corresponding to labelled objects in order to detect edges
between [8]. As a general approach to edge detection, this
method is reliable and widely applicable with corresponding
labelled data. However, these typically require large volumes
of labelled data of all objects typically found in the application-
specific environment. To address this, region-based classifica-
tion methods are utilized to group outlying data together as
one class of data [9].

With these concepts, it becomes clear that a combination
of a semi-supervised autolabeller and a region-based classifier
may be powerful in water boundary detection. In this paper, we
propose a semi-supervised machine learning classifier which
can determine the water limits by classifying wet and dry
sand on the coastline found with drone imagery through the
following procedure:

1) Identify small windows where water and land meet
through a semi-supervised autolabeller

2) Classify land and water within the smaller image
through a supervised classifier

3) Extract the decision region for water boundary detec-
tion.

The rest of the paper is organized as follows. Section II
discusses existing related works surrounding water boundary
detection and the two main approaches to do so. Section III
explicates our model with results and analysis. In Section III,
there are three subsections A, B, and C corresponding to the
description of the dataset, the machine learning algorithms
used in the model, and the details of implementation including
performance evaluation. Section IV outlines comparison be-
tween our approaches and other existing approaches. Section
V discusses the future improvements that can be made to our
model. In Section VI, we conclude this paper.

II. RELATED WORK

In this section, we analyze previous approaches taken
and separate them into two general categories: image pre-
processing and satellite imaging.



A. Image Pre-Processing

Over the past few decades, advances in power efficiency
of small devices has enabled the use of real-time detection in
simple cases. Specifically, Unmanned Surface Vehicles (USV)
are able to use texture entropy to extract low-brightness areas
from a camera in real-time, thereby detecting a body of water
[10]. Similarly, probabilistic models using stochastic relaxation
on maximum a posteriori estimators are used to detect general
boundaries in images by segmenting the boundary from the
rest of the image [11].

Notably, these approaches rely exclusively on statistical
analysis to either extract or trace the boundary, resulting in
a disparity between human and machine performance [12].
Similarly, land with high surface reflection or inconsistent
exposure to sunlight are known to disorient these models due
to the lack of contrast between the two regions [13]. By
consequence, these models may rely on human interaction for
the entire process or may provide erroneous results. However,
the complexity of these models are extremely small, meaning
that most (if not all) modern devices can complete the task.

B. Satellite Imaging

Contemporary machine and deep learning models require
large volumes of data to achieve high performance, prompting
the use of satellite images to train models [14]. Specifically,
the widespread availability of satellite images combined with
the advancements of convolutional neural networks (CNN)
have prompted investigations into deep networks for image
segmentation [15]. Primarily, these methods rely on a large
data volume to generate a large model to accomplish edge
detection from a high altitude perspective.

Generally, the drawback to using satellite images as a
foundation for the data collection is the abstract viewpoint
obscuring the exact boundaries [16]. Specifically, satellite
imaging is aptly suited for large bodies of water - like oceans
- to find a general water region around large bodies of land
- like countries. However, the images lack resolution to be
able to detect between a tidal region on the beach, where the
exact water boundary is fluid and moves on a much smaller
scale. Similarly, CNNs have a tendency to blur boundary pixels
which further obscures the exact region. Despite this, satellite
images are in abundance for this application, resulting in well-
curated data to promote model performance. Currently, there
are no well-established datasets using drone imagery, resulting
in a need to collect and prepare the data for the model before
creating a model.

III. OUR SOLUTION

In this section, we explicitly state how our solution de-
scribed in Section I has addressed the data complexity and the
classification infrastructure.

A. Description of Dataset

The raw training data set consists of two different compo-
nents: orthomosaic (ortho) imagery of sandy beaches (as input
data), and manually created dry beach outlines (as target/out-
put). The ortho images are in GeoTIFF file format, containing
georeferenced raster image data (RGB pixels). These files can

(a) Cross section of 100 pixel win-
dows.

(b) Visualization of RGB values in
R3 space.

Fig. 1: Visualization of the dataset. A) is a representation of
a 400 x 400 subsection of the image separated into individual
100 x 100 pixel windows. B) is a 3-D plot of the RGB values
separated by class, with orange, green, and blue denoting
’Land’, ’Unknown’, and ’Water’ labels respectively.

be up to 3.8 GB in size, resulting in a need for significant
memory capacity for training the model. To address this, the
files are segmented into smaller, square sub-images with a
200 x 200 pixel size. The dry beach outlines are shape files
(.shp), file type used in ArcGIS software. In this case, they are
essentially georeferenced polygons.

The data is being sourced from the Coastal Engineering
Research Group at Stevens. Aerial photographs are collected
using a DJI Phantom IV drone equipped with a 4K camera
at 380 ft altitude. The individual photos are georectified and
stitched together using the photogrammetry software AgiSoft
Photoscan to create the orthos, in addition to Digital Elevation
Models (DEMs). Each drone survey covers an area about 1,000
feet wide along 3 miles of North Jersey coastline. Photoscan
outputs each survey as up to 4 individual image chunks, and
each resulting ortho pixel covers approximately 1.2 inches
square. An example full survey orthomosaic composing 4
individual GeoTIFF files is shown in Figure 2(a). Figure 2(c)
demonstrates the scale of the original image pixels. The images
are referenced to the NAD83(2011) New Jersey State Plane
(ft US) geographic coordinate reference system, where the
horizontal and vertical axes of the images correspond to easting
and northing, respectively. The target classification data, in the
form of dry beach outlines, was created by manually tracing
the dry/wet beach line over the orthomosaics in ESRI ArcMap
at non-specific map scales.

There were several problems while preparing the data
for utilization. Primarily, the volume of information stored
in the GeoTIFF files resulted in significantly slow loading
times as well as conflicts with reading and writing using a
comma separated file (csv) format. This was largely due to
the original image dimensions, which were both very large
(50,000 x 50,000 to 60,000 x 130,000 pixels) and inconsistent
across the images. Furthermore, the raw images consist of large
volumes of seemingly empty space, resulting in significant
data overhead. Upon further inspection, these pixels were
determined to be ”black space” where the RGB values were
all 255 and the Alpha was 0, thus creating an ”empty” region
when looking at the image that persists through the data.



(a) Full survey ortho-
mosaic overlaid on a
street map

(b) Dry beach outline
over an orthomosaic im-
age.

(c) A person sitting on
a beach towel, demon-
strating the scale of the
original GeoTIFF pix-
els.

Fig. 2: Visual representation of original orthomosaic images.
A) visualizes the region covered within one image. B) high-
lights a target region for boundary detection within the images.
C) is an example of irrelevant objects that interfere with
boundary detection.

To address this, the data was first loaded using 200 x 200
pixel windows and converted to their RGBA values. These
values were then passed through an averaging algorithm to
determine if the square window entirely consisted of black
pixels. Based on the outcome of the algorithm, all empty
windows were ignored and every other window was saved
to it’s own 200 x 200 PNG file. The same process was
conducted using 100 x 100 pixel windows. By consequence,
a new dataset was created for each original GeoTIFF image
consisting of the average RGB values within the boundaries
of the windows depicted in Figure 1. At the end of the
process, there were between 9,999 and 56,491 stored windows,
reducing the volume of each image by 10% - 84% for the 200
pixel windows, and 92% - 98% for the 100 pixel windows.

Separately, the orthomosaic dataset contained no labels on
its own, resulting in the development of a baseline labelling
system. Specifically, if the average RGB values in the window
were in the blue region of the color spectrum they were
labelled as ’Water’, and if they were within the yellow region
they were labelled as ’Land’. Values that were intermediary or
outside of either region were labelled as unknown, indicating
either a mixture of both land and water. These labels are not
meant to be final and are adjusted throughout the model.

Alternatively, the previously mentioned dry beach outline
shape files were used to label compressed orthomosaic images.
This process was handled using MATLAB to take advantage
of its Mapping Toolbox which can easily handle geospatial
raster images and shape files. First, a fixed georeferenced grid
was created with 10 ft cell size to span the entire area of a
drone survey. Then, an original orthomosaic GeoTIFF image
was read as a matrix of RGBA pixel values, and the image
was cropped to the rectangular extent of non-empty data. Non-
empty pixels were then grouped by their location within the
fixed grid, and their RGBA values were averaged to create
a new compressed raster matrix of 10 ft square pixels. Next,
the dry beach outline was used to label all pixels within the

outline polygon with a value of 1 (the positive class) and the
pixels outside the polygon were labeled with a value of 0 (the
negative class). Finally, the compressed raster was converted to
a CSV file containing pixel locations (both relative to the image
and spatially) along with RGBA values and labels. Figure 2(b)
shows an example of a dry beach outline.

B. Machine Learning Algorithms

For the model design, there are two main components
requiring different machine learning approaches. Specifically,
the auto-labeller requires an unsupervised algorithm while the
classifier requires a supervised algorithm. To address these,
the k-Means clustering and k-nearest neighbors classification
algorithms were selected for the respective components.

1) k-Means Clustering Algorithm: As an algorithm, k-
means clustering presents an intriguing balance between intra-
cluster and inter-cluster correlation [17]. Specifically, mini-
mization of intra-cluster similarity for selecting centroids and
maximization of inter-cluster similarity for decision bound-
aries present an opportunity to assimilate unknown data into
classes. In other words, training the model with 3 labels and
restricting the number of possible classifications to 2 allows for
determining the region-specific water boundary. Additionally,
the intra-cluster similarity enables visibility through local class
validation within clusters by passing in data with known labels.

From a design perspective, k-means clustering allows for a
reduction in unique labels under the assumption that a cluster
equates to a label. To identify the relationship, a comparison
of the original labels against each cluster allows for direct
relabelling of unknown data. For example if 80% of the known
’Land’ data falls is grouped under cluster 1, then all data
within cluster 1 are labelled ’Land’. Inherently, this does not
address the algorithm’s susceptibility to noise when the data
distributions are correlated. However, this is done purposefully
to identify any ’Unknown’ data as well as incorrectly labelled
data from the initial labelling method in Section III A.

With this understanding, the number of neighbors was fixed
at 2 with a cluster corresponding to either ’Land’ or ’Water’
labels. Additionally, the initialization was set to random to
produce different clustering iteratively. The baseline accuracy
of the model was 34%, measured by determining the maximum
of the percentage of ’Land’ data labelled within each cluster.
This will be explicated in further detail in Section III C1.

2) k-Nearest Neighbors Classification Algorithm: Algorith-
mically, k-nearest neighbors (kNN) classification has the same
foundation as k-means clustering. Notably, the difference exists
on boundary point performance, where k-means relies on the
inter-cluster similarity while kNN relies on weight functions
on each neighborhood. Furthermore, this classification method
allows for variable neighborhood sizes that can differ from the
k-means deterministic size, resulting in an additional level of
label validation.

In principal, combining these two techniques in series -
where k-means propagates the labels to kNN - increases the
robustness for classifying data near the decision region. This
aligns with the purpose of the classifier as a refined decision
region results in pixel-specific water boundary detection. Fur-
thermore, this enables the computational cost to be reduced



(a) Original data labels. (b) Autolabeller results with k=2.

Fig. 3: Visualization of the dataset. A) is the representation of
the data prior to the autolabeller. B) is a 3-D plot of the RGB
values separated by cluster, with orange denoting ’Land’ and
blue denoting ’Water’. The green data denotes the ’Unknown’
data, which are assimilated in to the 2 clusters in B).

significantly after training, as it can be used to classify pixels
only within ’Unknown’ windows.

For these reasons, the kNN algorithm was implemented
to refine the water boundary detection. At initialization, the
weight distribution was uniform and the number of neighbors
was 4. The base performance of this model on the original data
(including ’Unknown’ labels) was 82%. The base performance
using the k-means labels was 84%. The optimization of this
model is outlined in Section III C2.

3) SVM and SVM-C Classification Algorithm: Support
Vector Machine was selected for classification due to how
SVMs are resilient in nature and deal very well with outliers
over other classification methods. SVMs can also deal with
high dimensional data utilizing kernel trick. RBF works by
mapping the input data into a higher-dimensional feature space,
where the classes can be separated by a hyperplane. This
classifier utilizes this advantage of Radial Basis Function
(RBF) kernel, which enables non-linearity and flexibility in
the decision boundary. This is required to accommodate the
characteristics of water boundaries in images.

As an alternative form, SVM can be adopted using c-
support vectors (SVM-C). These vectors are inherently linear
by nature, requiring the hyperplane separation to also be linear.
This additional condition is separate to the SVMs, as the
ability to represent higher dimensionalities becomes difficult.
However, this condition can be satisfied so long as the margins
are can be linearly solved. As such, SVM-C can outperform
SVM models in linearly separable cases.

C. Implementation Details

In this section, we explicate the optimization process,
experimental results, and analysis of these results.

1) Autolabeller: In order to achieve high labelling perfor-
mance, the autolabeller requires a clearly separable dataset.
As shown in Figure 3(b), the clusters are not noticeably
separable. To address this, linear discriminant analysis (LDA)
was performed on the dataset to increase the separability of
the data in 3-dimensions or create a lower-dimension feature
space with higher separability.

Cluster 1D 2D Base
TP 1 49.9% 51.9% 52.9%
TP 0 50.0% 51.0% 47.9%
FP 1 54.3% 50.2% 49.4%
FP 0 52.1% 50.5% 53.4%

TABLE I: Average true and false positive rates for autolabeller
with LDA reduction to 1D, 2D and no reduction.

The performance was quantified through calculating the
sensitivity (true positive rate) and false positive rate of ’Land’
and ’Water’ labels in the autolabeller. The true labels were
given by the initial labelling scheme and were used to com-
pared the maximum percent of true positives in each cluster,
thus giving the corresponding label of the cluster. These
calculations were performed through 10 iterations with random
initial cluster starting points, for 1D, 2D, and 3D (original)
cases of the dataset. These values are expressed in Table I.

Based on these results, it is clear that reducing the data
to 2-dimensions provides the best labelling performance. Fur-
thermore, the closeness between the two rates indicates that
the clusters may be separating the data perpendicular to the
actual separation, indicating further separation is required. The
significance of this discovery has yet to be determined due to
the results of the classifier in Section III C2.

Furthermore, dataset for water border detection includes
images with extremely high dimensions (about 20,000 x
50,000) and high memory size(1-2GB). Therefore, the first
phase in the label generation process involved downsampling
these images to bring ease in computation. The height of every
image was reduced to 250 pixels maintaining the aspect ratio,
and the RGB values were normalized to the range of 0 to 1.
The images were then transformed into dataframes, where each
image was represented by columns labeled ’R’, ’G’, and ’B’
denoting the RGB values, and ’xPos’ and ’yPos’ indicating the
pixel location.

The k-means clustering algorithm was applied to partition
the RGB values into two clusters, separating the blue and green
components of the sea water from the rest of the area. However,
a drawback of segmenting photos using this method is that it
clusters pixels based on color similarity and would also group
together grass patches and swimming pools as Seawater.

To overcome this limitation in labeling the pixels of the im-
age, around 40% of the pixels on the left side that were initially
labeled as water were reclassified as land. Furthermore, the
images had inappropriate dimensions, with transparent pixels
present on both sides. To address this issue, 15% 1of the
pixels on the right side were transformed into water. These
adjustments were done considering that, in a typical image
inside the collection, the left side of the image consists of
sand and cityscape, while the right side represents the sea.
As displayed in Figure 4 labelling the data by manipulating
clustering, refines the output eliminating the irrelevant patches
on the left end. The K-means clustering was evaluated with
inertia of 2518.787 and Cluster Score of -26811.489.

2) kNN Classification: To improve on the final classifi-
cation, the kNN algorithm was optimized iteratively. Funda-
mentally, this would provide a graphical representation for



Fig. 4: Side-by-side representation of the original image,
clustering image, and the labelled image.

the optimal tuning parameters as well as define a relationship
between the autolabeller and the classifier. In practice, there
were two measurements of performance: one using the original
labels and another using the labels from the autolabeller.

Before comparing performance, optimization of the model
parameters was conducted. As shown in Figure 3, the optimal
number of neighbors for the model is 5 and the optimal
weight distribution is uniform. These values were calculated
through iteratively training and testing the model after setting
the weight distribution to uniform, then incrementally increase
the number of neighbors from 1 to 25. This procedure was
conducted again using the inverse distance between points as
the distribution function. Both datasets were used separately
during the optimization procedure, yielding the same results.

The performance of the optimized model against both sets
of labels was done using the accuracy score of the classifier. As
previously mentioned in Section III B2, the baseline accuracy
on the initial dataset was 82% and the baseline accuracy
with the autolabller was 84%. After optimization, the accuracy
using the initial dataset was 89% and the accuracy using the
autolabeller was 99%. These correspond to a 8.5% and 17%
overall performance increase in the model.

Notably, the performance increase using the autolabeller is
sharp. This can be attributed to the similarity in mathematical
foundation between k-means and kNN, where both algorithms
generate similar decision regions. Primarily, this indicates
a codependency between the generated labels and the final
classification, which may negatively impact the water boundary
detection.

3) Logistic Regression Classification: In order to reach new
conclusions using the labelled dataset, a logistic regression
model was created. Based on the kNN results, the data may
be linearly separable with dispursed overlap between classes.
Consequently, the logistic regression algorithm should provide
Ultimately, the model The best parameters were determined to
be: L2 penalty, Limited-memory Broyden-Fletcher-Goldfarb-
Shanno (LBFGS) solver, maximum of 1500 iterations, and
balanced class weights.

Fig. 5: Performance of kNN classifier against the labels gen-
erated from autolabeller. These graphs were used to determine
optimal number of neighbors and weight distribution to be
5 and uniform respectively. The values being nearly 100%
indicate a high correlation across neighborhood sizes.

Data Class Precision Recall Accuracy
Training Class 0 92% 84% 85%
Training Class 1 72% 84% 84%
Testing Class 0 93% 95% 91%
Testing Class 1 89% 85% 90%

TABLE II: Logistic regression performance using both gener-
ated labels and preliminary labels.

The performance of the classifier is shown in Table II.
Notably, the classifier performed poorly when implemented
into the complete model with a maximum accuracy of 64.44%,
indicating instability due to noise. The consistent performance
for both precision and recall indicates a heavy reliance on
initial labelling, which explains the high performance when
using the original labels compared to the estimated labels.

4) SVM Classification: The model was implemented in
Python using scikit-learn. One image’s labeled CSV file was
read and any remaining empty pixels were removed from the
data. The data was downsampled to 1000 sample pixels per
label for a total of 2000 samples in the training and testing
dataset, which were split by an 80/20 ratio. Figure 6 displays
the samples in 3- and 2-dimensional color spaces. The RGB
data was then scaled using StandardScaler before being used
to fit the SVC algorithm with a Gaussian RBF kernel. After
an initial training and testing with default hyperparameters, a
grid search was performed using the GridSearchCV function
to find optimal parameters “C” and “gamma”, with results of
1000 and 1, respectively. The scoring metric used was the F1-
score, as the goal was to optimize precision and recall. Within
the downsampled data, training data precision and recall were
0.92 and 0.98, respectively, and for testing data the scores were
0.90 and 0.97.

The similarities between the training and testing scores
indicate that the model was not overfit to the training data.
After the optimized model was developed, it was applied to
the full image data before downsampling, which included both



(a) (b)

Fig. 6: Visualization of the downsampled manually labeled
data in (left) Red-Green-Blue color space and (right) Red-Blue
color space. Orange markers indicate “dry beach” labels (pos-
itive class) and blue markers indicate “other” labels (negative
class).

Fig. 7: Confusion matrix for the optimized support vector
classifier applied to the full image.

the training and testing data as well as many more datapoints
which were not used to build the model. The precision score
across the full image was reduced to 0.80, but the recall
remained at 0.97. The confusion matrix is shown in Figure
7. In other words, the model erred towards classifying a pixel
as positive, so it tended to capture the vast majority of the dry
beach pixels while also classifying some “other” pixels as dry
beach. An issue with evaluating the model based on ground
truth related scores is that the manual labels are noisy, with
some dry beach classified as “other”, an ambiguous border
between dry beach and water, as well as random objects on the
beach being classified as dry beach while existing anywhere
on the RGB color spectrum.

To better understand the model’s performance conceptually,
the predicted labels were combined with the original pixel
locations and plotted to produce a map of predicted labels,
alongside the “true” labels in Figure 8. The model appears
to do especially well differentiating the water from the dry
beach (water is on the right), but foam on the waves probably
gets misidentified often, which would explain the streaks of
misclassified water near the shoreline. Understandably, many
pixels behind the beach are classified as part of the beach. This
can include any random features like buildings, roads, lawns,
etc. Also, we can see places on the beach that were classified
as other, which likely includes other objects present on the
beach such as groins (shore perpendicular rock structures).

Fig. 8: Map of labeled and predicted classifications for the
image used to train the SVC.

(a) (b) (c)

Fig. 9: Orthomosaics of the three images used to train and
evaluate the model. Images numbered 1, 2, 3 from left to right.

This model built from a singular image was then tested on
two more images to gain further insight into its performance.
The three images used here are shown in Figure 9. The model
had very poor performance with image 2, shown in Figure I.
The precision score was 0.73 and the recall was 0.66. Referring
back to its orthomosaic, it appears that for some reason, the
color is shifted a bit on the south half of the image, perhaps
from Photoscan’s image processing. The north-south difference
in the accuracy displayed in Figure I looks like it is probably
due to this color difference. The model must have been trained
on sand of a color similar to the north half, and the color
difference is enough to push the southern pixels outside the
decision boundary. The model performed well on the third
image with precision of 0.84 and recall of 0.87, with an
unremarkable map comparison.

This model could be greatly improved by combining la-
beled pixels from multiple images across multiple surveys
rather than using a single image for model training. This would
allow the model to be trained with data that includes more
varied shading and coloring of the sand and water, whether
from real differences, light levels, camera settings, and image
processing differences. This would theoretically fix the issue
seen with the second image. To test this concept, the 3 images
previously evaluated were combined into a single CSV file and



Fig. 10: Map of labeled and predicted classifications for image
2 run through the model trained on image 1.

(a) Map of labeled and
predicted classifications
for image 1.

(b) Map of labeled and
predicted classifications
for the image 2.

(c) Map of labeled and
predicted classifications
for the image 3.

Fig. 11: Visual representation of boundary detection using the
model trained on all three images. Results for image 1, 2, and
3 are denoted by A), B), and C) respectively.

used to train a new model using the same process as before. In
order of images 1 to 3, the precision scores were 0.75, 0.68,
and 0.82, while the recall scores were 0.95, 0.95, and 1.00.
Again, the model had higher recall than precision scores. The
recall performance was very good across all 3 images. The
final classification maps are shown in figures 11(a), 11(b),
and 11(c). These maps show that again, the model does better
differentiating between the beach and water than between the
beach and land behind the beach, so most of the false positives
can be attributed to other land-based pixels.

5) SVM-C Classification: As seen in Figure 12 the SVM-
C classifier creates an overall smoother decision boundary and
creates an optimal classification between two regions elimi-
nating the discrepancies in the Labelled dataset. In this case,
the discrepancies are caused by sea-waves. The classifier is
evaluated on accuracy based on the generated labels as shown
in Table III. Although these accuracies aren’t completely true,
but they give an overall better understanding of classification.
The SVM-C model had an 85% training accuracy and a 91%
testing accuracy.

Fig. 12: Comparison of original image (left), clustering results
(middle), and SVM-C classified data (right).

Data Class Precision Recall Accuracy
Training Class 0 92% 84% 85%
Training Class 1 72% 84% 84%
Testing Class 0 93% 95% 91%
Testing Class 1 89% 85% 90%

TABLE III: SVM-C classification results using generated la-
belling.

6) Future Implementation Plans: Potential future improve-
ments to this model could be to treat water as the positive class
instead of dry beach, as was done with the unsupervised learn-
ing model. This could potentially result in a clearer decision
boundary with better results while still accomplishing the task
of delineating between the beach and the water. This would
require an adjustment to the labeling script and rerunning it to
create new CSVs for each image. Ideally, more images would
be used to train the model, but the process of labeling the
data was time intensive, both in terms of drawing polygons
and running the MATLAB script. A second classification step
could be implemented which takes advantage of the clustering
of the predicted labels in x-y space to define sharp boundaries
between regions, whether the positive class is dry beach or
water.

IV. COMPARISON

For comparison, the classification algorithms are evaluated.
In order to determine the best performing model, a com-
bination of quantitative and qualitative metrics are required.
Specifically, the precision, recall, and accuracy are the de-
termining metrics, with model simplicity and basic approach
are key contributors. For basic approaches, the models are
separated into ’Sand vs All’ (SVA) and ’Water vs All’ (WVA)
classification approaches denoting which class is used as
the determining factor. In essance, SVA will have irrelevant
features classified as ’Water’ while WVA will classify them as
’Sand’ in our binary decision model.

For quantitative metrics, the logistic regression classifi-
cation model performs 20% worse than the other models.



This is likely due to a large amount of data manipulation
required to fit the feature space to the models. However, this
is the simplest model implemented with the WVA approach.
Comparatively, the kNN classifier outperforms all other clas-
sifiers. This model has relatively low complexity and and
utlizes the WVA approach. Notably, this model will not create
a new decision region from the generate labels, as the two
algorithms used reach nearly the same conclusion. Therefore,
kNN classification model is the least appropriate model while
the logistic regression model is the worst performing model.

For the SVM comparison, the two models performed
relatively similarly. Specifically, the SVM model had ap-
proximately 6% better recall and the SVM-C model had
approximately 7% better precision. In terms of complexity,
both models are nearly identical, with the c-support vectors
being slightly better. Most notably, the SVM model uses a
SVA approach while the SVM-C model uses a WVA approach.
Because of this, the water boundary is less clear on the
SVM when recreating the image. Therefore, the best classifier
implemented is the SVM-C classifier.

V. FUTURE DIRECTIONS

Potential future improvements to this model could be to
treat water as the positive class instead of dry beach, as was
done with the unsupervised learning model. This could poten-
tially result in a clearer decision boundary with better results
while still accomplishing the task of delineating between the
beach and the water. This would require an adjustment to the
labeling script and rerunning it to create new CSVs for each
image. Ideally, more images would be used to train the model,
but the process of labeling the data was time intensive, both in
terms of drawing polygons and running the MATLAB script.
A second classification step could be implemented which takes
advantage of the clustering of the predicted labels in x-y
space to define sharp boundaries between regions, whether the
positive class is dry beach or water.

VI. CONCLUSION

Detecting water boundaries through drone imagery is a
critical component towards understanding ocean topology. As
shown through this paper, we have successfully detected
water-land boundaries to near human levels using SVM-
C classification. Furthermore, we have created an accurate
semi-supervised labelling scheme that can label both pixels
and small windows of images using k-means clustering. By
combining both of these models together, the cumulative model
has shown to be resilient with larger data volumes.

Videos with continuous data streams have temporal in-
formation and increase the complexity of the data analysis.
Furthermore, continuous data introduces new sources of noise
and error, resulting in an increase to complexity. Further
research using drone video may be significant due to the rising
use of drones. Additionally, research into addressing temporal
complications can be applied to all uses of drones, resulting
in a more broad application.
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