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Abstract—Open Radio Access Network (O-RAN) offers a
transformative approach to cellular network design by pro-
moting a virtualized, open, and intelligent architecture. The
increasing complexity and security demands of modern cellular
networks necessitate robust methods for device identification
and management. This paper provides a way for integrating
Federated Learning for device fingerprinting within the Open
Radio Access Network (O-RAN) framework, enhancing network
security and device management. Our approach leverages unique
RF signal characteristics, captured through Channel State Infor-
mation (CSI), to identify devices without the need for centralized
data processing or custom hardware. We set up a real-world
experimental environment using the POWDER Wireless testbed,
simulating O-RAN with base stations and user equipment. Using
a deep learning model to process the CSI data to classify devices.
With an xAPP deployed on a Near Real-Time Radio Intelligent
Controller (RT-RIC), our model uses a federated learning ap-
proach for distributed training across base stations. Initial results
demonstrate nearly 99.75% accuracy in device identification,
showcasing the potential of our approach to integrate advanced
AI techniques in O-RAN for improved network performance and
security. This research underscores the feasibility and practi-
cal effectiveness of enhancing next-generation cellular networks
through O-RAN’s open and intelligent architecture.

Keywords—Federated Learning, Fingerprinting, O-RAN, CSI,
xAPP.

I. INTRODUCTION

Open Radio Access Networks (O-RAN) present a trans-
formative approach to designing, deploying, and operating
cellular networks. It aims to revolutionize the telecom ecosys-
tem by promoting a virtualized, open and intelligent RAN
architecture. O-RAN enables disaggregated components to be
connected via open interfaces and optimized through intelli-
gent controllers, supporting multi-vendor interoperability and
programmatic optimization through data-driven closed-loop
control.The architecture is significantly shaped by the O-RAN
Alliance, which standardizes open interfaces and promotes the
integration of artificial intelligence (AI) and machine learning
(ML) for efficient network management and optimization.[1]

O-RAN disaggregates traditional 5G base station archi-
tecture into three components: O-Central Unit (O-CU), O-
Distributed Unit (O-DU), and O-Radio Unit (O-RU). The O-
CU is further split into control plane (O-CU-CP) and user
plane (O-CU-UP), allowing for specialized management of
control and data traffic, which can be deployed at different
locations. The O-DU handles real-time and near-real-time

Fig. 1: O-RAN Architecture [1]

processing tasks for higher-layer PHY functions, making it
suitable for edge deployment. The O-RU focuses on RF
components and lower-PHY functions, deployed close to the
antenna to simplify deployment and reduce costs. These units
are connected via open and standardized interfaces, enhancing
interoperability and flexibility. This disaggregation offers key
benefits such as interoperability between different vendors’
equipment, flexibility in deploying network functions, scala-
bility to optimize resource utilization, and fostering innovation
through open interfaces. Compared to traditional 5G base
stations, O-RAN’s architecture is more open, flexible, and cost-
effective, enabling a multi-vendor ecosystem and supporting
the development of new services and applications by third-
party developers.[1]

O-RAN introduces applications of Artificial Intelligence
and Machine Learning Methods into the traditional RAN struc-
ture through the integration of RAN Intelligent Controllers.
The architecture incorporates two types of RAN Intelligent
Controllers (RICs): the Non-Real-Time RIC (Non-RT RIC)
and the Near-Real-Time RIC (Near-RT RIC). Near-RT RIC
is designed to handle time-sensitive operations and operates
in time range of 10ms to 1 second, it is responsible for
RAN functions that require real-time control such as resource
management. It can make adjustments quickly to ensure op-
timal network performance. Non-RT RICs handle tasks that
are not time sensitive, and operate with time sensitivities of 1
second or greater. It focuses on long term optimization tasks
such as policy-based managements and network analytics. It



provides optimization policies to Near RT RIC to improve
network’s efficiency and performance over a longer period.
These controllers facilitate intelligent control and orchestration
of network resources through policy-based guidance, fine-
grained data monitoring, and adaptive control actions. O-
RAN’s integration of AI and ML fundamentally enhances
its capability to manage complex, heterogeneous networks
dynamically and efficiently. The disaggregated and open nature
of O-RAN allows for seamless incorporation of intelligent
controllers that can autonomously optimize network opera-
tions, thereby improving performance, reducing costs, and
enabling rapid deployment of innovative services. As research
and development in this field progress, O-RAN is poised to
be a cornerstone in the evolution of next-generation cellular
networks.[2]

In a traditional cellular network architecture, the commu-
nication process between a User Equipment (UE) and a base
station (eNB) involves several message exchanges to establish
and maintain connectivity. Initially, the UE sends an access
request to the eNB, which responds by prompting the UE for
authentication. Throughout the session, data packets are con-
tinuously exchanged between the UE and eNB. This process,
however, is vulnerable to security threats, such as malicious de-
vices attempting to intercept messages or impersonate the UE
or eNB. To mitigate such risks, RF device fingerprinting can be
employed. This technique leverages the unique hardware-level
imperfections in the radio circuitry of devices to create distinct
fingerprints, enabling the identification and authentication of
devices at the physical layer itself. By capturing and analyzing
the RF signals, specific features such as I/Q imbalance, phase
noise, and frequency offset can be extracted to identify the de-
vice. This technique enhances security in wireless networks by
authenticating devices and detecting unauthorized access.[3]
O-RAN can significantly enhance this security process by
utilizing their RAN Intelligent Controllers (RICs) that leverage
AI for dynamic network management and optimization.

In this paper we implement a Federated Learning workflow
over the O-RAN architecture and provide a Radio Finger-
printing method to distinguish between communicating UEs
at eNBs using their Channel State Information (CSI) obtained
from their transmissions, specifically their Magnitude and and
Phase information using a Deep Learning Model. Preliminary
results from this model shows a accuracy of around 99%. To
maintain the security of transmissions this model is trained at
eNBs employing a Federated Learning Method with the Near
RT-RIC acting as a global node where we deploy our xAPP
which stores the DL Model and its weights and is updated
based on training metrics received from eNBs.

The rest of the paper is organized as follows. Section II
discusses related work. Our design is elaborated in Section
III. The experimental evaluations are illustrated in Section IV.
Section V shows the future research directions. Section VI
concludes this paper.

II. RELATED WORK

RF (Radio Frequency) fingerprinting’s early developments
starts as early as 1960s from military sector to modern ap-
plications in cellular networks. RF fingerprinting has emerged
as a crucial technique for device identification and network

security by leveraging unique hardware-specific imperfections
in the RF signals of wireless devices. Researches in Radio-
Fingerprinting based on slight device imperfections have been
in works for a long period but most of these methods use
traditional feature extraction approaches but with rise of Deep
Learning Methods this task can be achieved more easily.

Channel State Information (CSI) for a network contains all
the vital information for the channel in wireless communica-
tions. It includes data on how the signal propagates from the
transmitter to the receiver, encompassing factors like path loss,
scattering, fading, and power delay profile. Ref [4] explores the
utilization of CSI in MIMO-OFDM (Multiple Input Multiple
Output-Orthogonal Frequency Division Multiplexing) systems
for device identification. The authors discuss how hardware-
specific imperfections, such as phase noise from RF oscillators,
can serve as reliable device fingerprints. They highlight the
challenge posed by various sources of phase noise, including
Time of Flight (ToF), Sampling Frequency Offset (SFO),
and Carrier Frequency Offset (CFO), which complicate the
extraction of unique device signatures. The proposed method
focuses on isolating the unique phase noise introduced by
the RF oscillators within a single transmitter, achieving high
identification accuracy using off-the-shelf hardware in real-
world settings. This study proves that even use of the same
hardware devices still produce a varying results in their
transmissions due to slight hardware imperfections and can
be easily distinguished based on their CSI information, thus
giving a chance to secure authentication on a network at a
lower physical level.

In the work by ref. [3], they explore the use of employing
a Convolutional Deep Learning Model for distinguishing RF
devices based on their CSI information captured in various
environmental conditions such as anechoic chambers, real-
world scenarios, and wired connections. Their motivation for
employing a deep learning (DL) model for RF fingerprinting
arises from the unique capabilities of DL models, particularly
convolutional neural networks (CNNs), to identify and learn
complex and high-dimensional patterns within data. Tradi-
tional RF fingerprinting methods rely heavily on manually
engineered features and shallow models that often fail to
capture the subtle hardware imperfections that are unique
to each wireless device. CNNs, with their powerful feature
extraction capabilities, can automatically learn these patterns
directly from raw I/Q samples, thereby eliminating the need
for manual feature engineering. Additionally, DL models are
inherently robust to variations in data, such as those introduced
by different environmental conditions or channel states. This
robustness is crucial for RF fingerprinting, where the wireless
channel can introduce significant variability that traditional
models may struggle to handle. Following this methodology
we develop our model using convolutional layers to train on the
CSI Information that we capture over the ORAN Architecture.

Federated Learning (FL) is a method of distributed machine
learning that allows for training of models on local devices
without sharing of data between devices and hence preserving
privacy of data. FL’s decentralized nature makes it suitable
for environments where data privacy is a primary concern,
such as Network Transmissions in this case. The survey by
ref. [5] details on integration of Federated Learning within
the ORAN architecture and how the distributed nature of FL



works in combination with ORAN’s decentralized structure.
This integration of FL in ORAN provides with a several
advantages such as enhanced data privacy, reduced latency,
optimized resource utilization, and improved scalability.

III. OUR SOLUTION

To implement Federated Learning on O-RAN, we deploy
a xAPP on a Near RT-RIC, this xAPP acts as a central node
to all the base stations and stores the DL model and its
weights. The Near RT-RIC is a crucial component of the O-
RAN architecture, it has lower response times and helps in
reducing latency in model updates and weight aggregation
from several eNBs. When the RIC receives weight updates
from all the participating eNBs, the xAPP aggregates weights
and sends model updates back to continue training. The xAPP
also stores these updates and Model Definition in its Shared
Data Layer (SDL) for ease of access to model and reducing
program overhead.

Fig. 2: Communication Between eNBs and RIC

O-RAN offers a disaggregated approach to base-stations.
Here we make use of the disaggregated components O-RU and
O-DU. The O-RU is responsible for collecting the Raw RF data
and other Physical Layer Information from the communicating
UEs over the network. We collect the CSI information at O-
RU which is then forwarded to O-DU. The O-DU is well-
suited for running a computationally intensive task such as
model training since it is located closer to the edge computing
layers and can utilize resources such as CPUs or GPUs more
efficiently.

A. Description of Dataset

We transmitted internet packets using the Open-Source
Software GNURadio and Wifi Signal Transmissions as sim-
ulated by ref [6] using the BPSK 1/2 encoding under the
IEEE 802.11p standards for Transmissions at 5.89GHz. The
packets were simple messages passed from UEs to eNBs.
These transmissions were done by the simulated UEs to eNBs.
At the eNB end we captured these packets and calculated CSI
information from them.

Each packet consists of its related attributes such as Source
Address (address 1), Destination Address (address 2) and its
BSS Gateway (address 3) and a 52 vector raw I/Q data related
to each of the packets as shown in fig. 3. Based on this
information we setup our transmissions between the UEs and

Fig. 3: Decoded Information acquired from Packets

eNBs for 5 hours each for our Training Dataset and 1 hour for
Test Dataset, and captured around 188222 combined packets
as data points to train our model on.

B. Deep Learning Model

For training the data points we built a two-input deep learn-
ing model to take the magnitude and phase vectors computed
from packet’s CSI for classification of UE devices based on
their Transmissions fig. 4. Magnitude and Phase were decided
to be the primary varying attributes, as they showed a con-
sistent repeating pattern between them on both eNBs, despite
these factors varying based on their environmental conditions
they showed the most promising results in terms of effects of
noise and interferences over the time of transmissions. The
model makes uses of one dimensional convolutional layers to
find patterns unique to each UE device to before concatenating
and passing through further dense layers for classification.

Fig. 4: Deep learning Model



C. Implementation Details

An x-APP is depolyed on Near Real-Time Radio intelligent
Controller (RT-RIC) as a central node that stores our model and
weights in the RIC’s SDL and transmits it to the participating
eNBs through the E2-interface, collects the weights from all
the participating base stations and aggregates the weights of
the model and transmits them back to the base stations as a
approach to the federated learning.

The individual eNBs train on the transmissions received on
their end for one epoch in mini-batch method to make sure that
no data gets repeated and the model receives new data points
for each training epoch and transmit weights to base station
for aggregation. The approach is dynamic, any base station
can join on the process at any time during training acquire
the model and current weights and continue training from that
state.

IV. EVALUATION

A. Experiment Setup

Utilizing the Testbed provided by POWDER Wireless [7]
we set up our experiments to simulate a Open Radio Access
Network using X-310 USRPs to simulate Base Stations(eNB),
and B-210 USRPs to simulate User Equipments(UE) on O-
RAN connected to a Near RT-RIC through the E2 Interface.

Fig. 5: O-RAN Setup on POWDER testbed

B. Collected Data Analysis

From the collected I/Q data from packets we analysed that
the magnitude and phase were the two attributes that produced
consistent patterns at the receiving base-stations and were the
most distinguishing factors for each of the devices as shown
in fig. 6 and fig. 7.

Fig. 6: Comparison of Magnitudes from Two UEs Received
on each of the eNB

To set a baseline we first gathered all the data at a single
node and trained on it in a 80-20 train-test split and achieved

Fig. 7: Comparison of Phases from Two UEs Received on each
of the eNBs

99.42% percent accuracy on training and 97.69% accuracy
on validation set as shown in fig. 8. This high accuracy was
expected since both the devices give a easily distinguishable
fingerprint, despite these factors being dependant on the phys-
ical and environmental factors such distances, location and
radio interferences’ between the X-310s and B210s.

Fig. 8: Training metrics of Model Training on Single Node.

C. Federated Learning Results

Based on the previous results we then implemented the
federated learning process on our O-RAN setup. The difference
here with respect to baseline is that eNBs only train on their
individual transmission received on their end and not on other
eNBs as well. For federated learning we setup two eNBs
connected to Near RT-RIC and two UEs as shown in fig 5. The
results for federated learning show similar results as compared
to the baseline model. This implementation is able to achieve
a training accuracy of 99.63% and validation accuracy of
98.46% at one eNB and 99.75% training accuracy and 98.61%
validation accuracy on the other as shown in fig 9.

Fig. 9: Training Metrics of Model implemented in Federated
Learning



V. FUTURE DIRECTIONS

Although the Radio Fingerprinting model here works with
a high accuracy of 99% in this project it could be limited
due to lack of availability of Datasets on Radio Transmissions
history. This issue was also mentioned by ref. [3] wherein
they state that despite the need for RF Fingerprinting on
increase to enchance network security the lack of available
resources and datasets makes it a tough challenge. Future
work will focus on expanding the dataset to include a broader
variety of RF devices and transmissions, aiming to further
enhance the model’s performance and generalizability across
different O-RAN setups. This research underscores the promise
of O-RAN’s open and intelligent architecture in driving the
evolution of next-generation cellular networks, paving the way
for more secure, efficient, and scalable wireless communication
systems.

VI. CONCLUSION

This paper has demonstrated the successful integration
of Federated Learning and deep learning methodologies for
radio device fingerprinting within the O-RAN framework. By
leveraging unique imperfections in RF signals, we achieved
highly accurate device identification, enhancing network se-
curity and device management. The experimental setup using
the POWDER Wireless testbed and the deployment of the deep
learning model on the Near RT-RIC showcased the feasibility
and effectiveness of this approach. The federated learning
method allowed for distributed training across multiple base
stations, ensuring continuous model improvement without cen-
tralizing sensitive data. The results highlight the potential
of advanced AI techniques in dynamically and efficiently
managing complex, heterogeneous networks. This research
underscores the promise of O-RAN’s open and intelligent
architecture in driving the evolution of next-generation cellular
networks, paving the way for more secure, efficient, and
scalable wireless communication systems.
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