Network Slicing for Vehicle Communications in
Open Radio Access Networks

Saurabh Parkar
ECE Department
Stevens Institute of Technology
Hoboken, USA
sparkar @stevens.edu

Abstract—The rapid advancement of connected and autonomous
vehicles has significantly increased the demand for efficient
and reliable Vehicle-to-Everything (V2X) communication systems,
which are essential for ensuring real-time data exchange between
vehicles, infrastructure, and other entities. Network slicing is a
technique that creates multiple virtual networks optimized for
specific services, and is important in addressing the diverse Qual-
ity of Service (QoS) requirements of V2X communication, such
as ultra-low latency, high bandwidth, and reliability. However,
traditional cellular networks often struggle to meet these demands
due to their static and inflexible architectures. The introduction
of the Open Radio Access Network (O-RAN) architecture ad-
dresses these challenges by incorporating intelligent controllers,
specifically the Near-Real-Time RAN Intelligent Controller (Near-
RT RIC), which enhances network slicing through dynamic and
adaptive management of network resources. These controllers
leverage real-time data and machine learning algorithms to
optimize resource allocation, ensuring that each network slice
meets its specific QoS requirements even in highly dynamic
environments. In this paper, we present a method of network
slicing through a deep learning approach within an O-RAN-based
XApp to predict and manage network slices in a V2X environment.
Our method is able to achieve a 92% accuracy in slice type
prediction, demonstrating significant improvements in network
performance and resource allocation. This work showcases the
potential of combining O-RAN’s intelligent control capabilities
with advanced machine learning techniques to meet the stringent
demands of dynamic vehicular networks.

Keywords—V2X, Network Slicing, O-RAN.

I. INTRODUCTION
The increasing advancements in vehicle technologies and the
rise of connected and autonomous vehicles (CAVs) demand a
need for a more efficient and intelligent transportation system.
As vehicles become more interconnected and intelligent, the
need for a reliable, low latency communications structure
for them is also increased. Vehicle-to-everything (V2X) com-
munications encompasses these various types of interactions,
including Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure
(V2I), Vehicle-to-Pedestrian (V2P), and Vehicle-to-Network
(V2N) communication as shown in Fig[l] These interactions
are fundamental to the operation of smart transportation
systems, where vehicles share real-time information about
their environment, enabling safer and more efficient travel.
However, the dynamic and unpredictable nature of vehicular
environments poses significant challenges to maintaining the
high levels of reliability and low latency required by V2X
applications. Traditional Radio Access Networks (RANs) often
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lack the flexibility and intelligence needed to meet these
stringent requirements, especially in highly dynamic vehicular
environments. This limitation of a Traditional RAN structure
can be overcome by integrating the V2X communications with
the Open Radio Access Networks (O-RAN) Architecture.

Fig. 1: Overview of current V2X Architecture

O-RAN offers a transformative approach to cellular architec-
ture by promoting a virtualized, open, and intelligent archi-
tecture. O-RAN allows for disaggregated components to be
connected through open-interfaces and optimized by Intelligent
Controllers as shown in fig 2| This disaggregated approach
to cellular networks allows for multi-vendor interoperability
over the same infrastructure thus reducing operational costs
and enabling network optimization through data-driven closed-
loop control [1]. The O-RAN architecture is significantly
shaped by the O-RAN Alliance promoting standardized and
open-interfaces for network components and enabling Arti-
ficial Intelligence (AI) and Machine Learning (ML) based
intelligent policy control for efficient network optimization
and management. O-RAN integrates Al and ML into tradi-
tional RAN through RAN Intelligent Controllers (RICs): the
Near-Real-Time RIC (Near-RT RIC) and the Non-Real-Time
RIC (Non-RT RIC). The Near-RT RIC handles time-sensitive
operations (10ms to 1 second) for real-time control, such as
resource management, ensuring optimal network performance.
The Non-RT RIC manages non-time-sensitive tasks (1 sec-
ond or greater), focusing on long-term optimization, policy
management, and network analytics. These controllers enhance
network efficiency by enabling intelligent, adaptive control and



orchestration, making O-RAN crucial for the evolution of next-
generation cellular networks[2]].
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Fig. 2: O-RAN Architecture

Network slicing is the method of creating multiple virtual net-
works, each optimized for specific services ensuring efficient
resource allocation for meeting the required Service Level
Agreements (SLAs). Network slicing enables the allocation
of dedicated resources to various services, such as safety-
critical applications that require ultra-low latency and high
reliability, or infotainment systems that demand high data
rates. By segmenting the network into slices, service providers
can ensure that each V2X service operates under optimal
conditions, improving overall performance and efficiency. This
approach allows for the dynamic and flexible management
of network resources, crucial for addressing the diverse and
stringent requirements of V2X communications in real-time.
However, this process in V2X requires a definition of custom
service architectures which may not always be compatible with
the traditional cellular architectures due to less standardization
of components. However, in O-RAN, network slicing is further
enhanced by the RAN Intelligent Controllers, which can be
used to dynamically manage these slices through specialized
XApps, ensuring real-time optimization based on network con-
ditions. These RICs also allow us to implement deep learning
techniques as well for processing the network parameters and
dynamically adjusting resource allocations, improving network
and performance efficiency whilst providing a more standard-
ized and flexible architecture as compared to V2X.

Integration of O-RAN with V2X enables the deployment
of more complex control mechanisms that can dynamically
allocate resources and manage the network based on real-
time data collected from vehicles and roadside units (RSUs).
This integration of V2X with O-RAN includes extending the
architecture of V2X components such as RSUs to include
the E2 terminations as shown in Fig. @ This allows for a
more granular level of control, where the Near-RT RIC can
directly manage and optimize V2X communications by ad-
justing parameters based on the specific needs of each vehicle
or cluster of vehicles. This not only improves the efficiency
and reliability of the V2X system but also allows for predictive
maintenance and optimization, ensuring that the network can
respond to potential issues before they impact service delivery.
This integration provides a standardized, resilient, and scalable
infrastructure capable of supporting the future demands of

connected and autonomous vehicles.[3]]
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Fig. 3: Integrating RSUs into ORAN Architecture with E2
termination

This paper provides a network slicing solution based on
the Deep Learning technique for V2X communications by
integrating them within the latest O-RAN architecture through
a xApp. The deep learning model is trained on the Berlin
V2X Dataset. Training results show an accuracy of 92%. The
base stations (eNBs) communicate with this model deployed
on our xApp on the Near RT-RIC for predicting the type of
slice based on the features obtained from User Equipment
(UEs), the predictions are then sent back to eNBs for allocating
appropriate resources based on slice type.

The rest of the paper is organized as follows. Section [II]
discusses related work. Our design is elaborated in Section
The experimental evaluations are illustrated in Section
Section [V] shows the future research directions. Section [V
concludes this paper.

II. RELATED WORK
Network slicing in traditional cellular networks is primar-
ily based on a combination of rule-based and policy-driven
approaches using predefined configurations and conditions
to allocate network resources dynamically. But with current
increasing trends in AI/ML show a significant rise in Network
slicing based on Deep Learning Techniques.

With the rise of autonomous driving and connected vehicles,
V2X services are becoming increasingly critical, demanding
diverse Quality of Service (QoS) requirements, including ultra-
low latency, high reliability, and high data rates. The work
by ref. [4] provides the network slicing solution for V2X
communications using Deep Learning technique through Deep
Reinforcement Learning (DRL) approach. The paper proposes
a cloud-based framework that integrates Software-Defined
Networking (SDN) with Network Functions Virtualization
(NFV) to create a centralized control environment for network
slicing. This framework is divided into two domains: edge
cloud and remote cloud. The edge cloud, positioned closer to
the vehicular user equipment (VUE), ensures low latency by
hosting service entities in proximity, while the remote cloud
provides additional resources when the edge cloud’s capacity
is insufficient. Along with this they also define an intelligent
network slicing architecture consisting of four layers namely,
the Network Infrastructure Virtualization Layer virtualizes and



abstracts resources into a multi-dimensional resource pool for
allocation to network slices; the Intelligent Control Layer
manages and deploys network slices using ML algorithms;
Network Slice Layer defines network slices based on the QoS
needs of V2X services, such as traffic safety, autonomous
driving, and infotainment; Service Customized Layer: Aligns
network slices with the specific Service Level Agreements
(SLAs) of V2X service providers. It also defines the different
slices important for V2X communications. We used these def-
initions to create our own slices in the dataset. Although their
network slicing approach is able to efficiently optimize the
network, the traditional V2X architecture lacks the flexibility
needed to dynamically adapt to the highly variable conditions
of vehicular environments. Also, the high mobility of vehicles
makes it difficult to allocate resources efficiently. Here using
O-RANs Near RT-RIC and dynamic nature we are able to
efficiently process and predict network traffic and allocate
resources faster.

Network slicing techniques in O-RAN are greatly enhanced
by their Radio Intelligent Controllers, due to their ability to
sense network conditions from the RAN elements and allocate
resources accordingly. The work by ref. [5] provides a com-
plete implementation of policy-driven network slicing within
the ORAN architecture. The NexRAN framework is built upon
the srsRAN open-source mobility stack with integration of
O-RAN’s E2 agent, enabling it to function in the O-RAN
environment. This integration allows for facilitating network
slicing, different network slices can share the same frequency
band, and UEs can be explicitly associated with slices. The
NexRAN xApp utilizes the standard O-RAN key performance
measurements (KPM) service model to monitor the state of
the RAN and control slice behavior based on policy-driven
decisions. xApp reads the current state of RAN elements
and adjusts the slicing configuration in real-time to meet
predefined policies. This dynamic adjustment ensures optimal
resource allocation across different network slices. Along with
the network slicing application, the paper also highlights the
effectiveness of POWDER testbed for conducting wireless ex-
periments. The NexRAN framework provides a good reference
for network slicing, however, their rule-based, policy-driven
slicing may not be as efficient as employing DL methods for
predicting network patterns leading to better adaptability under
dynamic conditions of a highly mobile environment of V2X
communications.

The work by ref. [6] highlights the effectiveness of using
deep learning to enhance network slicing within O-RAN. Their
Network Slice Radio Resource Management (NSRRM) xApp
monitors the RAN conditions and adjusts RAN configurations
dynamically to ensure that the SLAs of different network
slices are met. Their xApp uses the BigDL Choronos tool for
time-series predictions, to develop flexible training pipelines
that can handle various data sampling granularities and loss
function designs. Based on the traffic predictions, the NSRRM
xApp calculates the appropriate radio resources to be reserved
or prioritized for each network slice. This ensures that the
network slices can meet their SLA requirements even under
fluctuating network conditions.

ITI. OUR SOLUTION
Network slicing in our O-RAN environment is implemented
through a XxAPP on the Near RT-RIC, this xAPP holds our

Deep Learning Model and predicts the slice type based on the
transmissions feature vector obtained from the UEs, and the
predictions are sent back to the eNBs to allocate the appro-
priate resources as per the slice type as shown in Fig. fi] The
Near RT-RIC’s lower response times help in fast allocations
of these resources as per the slice type, thus optimizing the
network efficiently in real-time.

XAPP layer

Internal Messaging infrastructure

E2 Termination |

Near RT-RIC

Fig. 4: O-RAN Setup Design

A. Description of Dataset

We used the Berlin V2X dataset ref. [7] for training our deep
learning model for network slicing. This dataset provides a
comprehensive number of different features associated in V2X
communications collected from 4 different vehicles over a
course of 3 days under various environments such as Avenue,
Highway, Residential, Tunnel, and Park settings. The features
of the dataset are listed in Fig. 5]

Data Sampling in-
category Source Tool terval Features
10 ms PHY: SNR, RSRP,
RSRQ, RSSI
20 ms PDSCH/PUSCH: RBs,
Mobile Insight TB Size, DL MCS, UL
~oblle nsight Tx Power
DME . "
Cellular Event-based RRC: Cell Identity,
DL/UL frequency, DL/UL
bandwidth
ping 1s Delay
iperf 1s DL Datarate, Jitter
Server iperf 1s UL Datarate, Jitter
tcpdump Event-based SNR, RSRP, RSRQ,
Sidelink SDR UE RSSI, Noise Power, Rx

Power, Rx Gain
1s Latitude, Longitude, Alti-

Position GPS tude, Velocity, Heading
HERE API 5 min Traffic Jam Factor, Traf-
fic Street Name, Traffic
Distance
Side Internet  DarkSky 1 hour Cloud cover, Humidity,
information = database

Precipitation Intensity &
Probability, Tempera-
ture, Pressure, Wind
Speed

Fig. 5: Berlin V2X Features

The dataset itself does not consists of the slice type feature
so we created our own slice type feature by setting up
our arbitrary thresholds for three slices: Low Latency, High
Bandwidth, and General. The Features selected for these slices
are as follows:

- Low Latency:

« ping_ms (< 2500): Measures the round-trip time it
takes for a packet to travel to a server and back,



directly reflecting network latency. A threshold of 2500
ms is used to categorize connections with relatively
low latency. While very low latencies (e.g., < 100 ms)
are ideal for real-time applications, a more inclusive
threshold helps capture a broader range of low-latency
scenarios suitable for applications that require respon-
sive communication but are not strictly real-time.

« Jjitter (< 0.003): Represents the variability in packet
arrival times. Lower jitter indicates more consistent
network performance, which is crucial for real-time
applications. A threshold of 0.003 is chosen to identify
scenarios where network performance is stable and
predictable. High jitter can disrupt real-time commu-
nications, so lower jitter is indicative of a network
suitable for latency-sensitive applications.

+  PCell_RSRP_max(> —100): Measures the power
level of the signal received from the cell tower, re-
flecting the strength of the connection. A stronger
signal (closer to 0 dBm) generally leads to more
reliable communication with fewer errors, reducing the
likelihood of re-transmissions and lowering latency.
The threshold of -100 dBm is chosen to filter out weak
signals that may cause delays.

+ PCell_SNR_1(> 10): Indicates the quality of the sig-
nal relative to background noise. A higher SNR leads
to clearer signals with fewer errors, which supports
faster and more reliable data transmission, contributing
to lower latency. A threshold of 10 is selected to ensure
that only scenarios with relatively good signal quality
are considered for low latency applications.

« speed_kmh(> 5 km/h): Faster movement may neces-
sitate lower latency to maintain seamless connectiv-
ity, especially in mobile scenarios.Devices in motion,
especially those moving faster than 5 km/h, often re-
quire more responsive network performance to handle
handovers between cell towers and maintain a stable
connection. This threshold ensures that the network
slice is suitable for mobile use cases.

- High Bandwidth:

« datarate(> 30Mbps): A threshold of 30 Mbps is
chosen to identify scenarios where a high data rate
is necessary. This is typical for applications that re-
quire fast download or upload speeds, such as video
streaming, large file transfers, or high-resolution video
conferencing.

«  PCell_Downlink_frequency (> 1500 MHz): Higher
frequency bands generally support higher data rates
due to increased bandwidth availability. A threshold of
1500 MHz is chosen to distinguish scenarios where the
network is operating on a frequency that can support
higher bandwidth.

« PCell_Downlink_bandwidth_MHz(> 15 MHz):
Wider bandwidths allow more data to be transmitted
simultaneously, making them suitable for high-
bandwidth applications. A threshold of 15 MHz is
set to ensure the network slice is appropriate for
scenarios that require substantial data throughput.

« PCell_Downlink_Num_RBs(> 50): Represents the
number of resource blocks allocated for downlink

transmission, a key determinant of network capacity.
More resource blocks indicate a larger share of the
channel’s bandwidth, supporting higher data rates.
A threshold of 50 ensures that only scenarios with
sufficient network resources are considered for high
bandwidth classification.

o PCell_Downlink_TB_Size(> 1000): The size of the
transport block in the downlink, which indicates the
amount of data being transmitted. Larger transport
blocks correspond to higher data throughput, which is
essential for high-bandwidth applications. This thresh-
old ensures that the network slice can handle substan-
tial data loads.

«  PCell_Downlink_Average_ MCS(> 10): Represents
the efficiency of data transmission, with higher MCS
values indicating better spectral efficiency. A threshold
of 10 is chosen to identify conditions where the
network is optimized for fast data transmission.

- General: The data-points that don’t match either of these
conditions where set to general slice.

Slice Type Distribution
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Fig. 6: Slice Distribution

Based on the above thresholds we got the following distribu-
tion of slice type, with the general type being most dominantly
present with nearly 73% of data points, followed by Low
latency with 23% and 4% of High Bandwidth as shown in
Fig. [6] This distribution gives an accurate representation of a
usual environment considering a majority of Vehicles/Devices
would be in general with only a few being in Low Latency or
Higher Bandwidth requirements.

B. Deep Learning Model

We built a simple Dense model for classification of the data
points as shown in Fig. [7]] The deep learning model takes
in a feature vector of UEs transmissions consisting of the
features discussed in Section for predicting the different
slices. Some Dropout layers were also added to the model
to overcome the disparity of slice-type distribution and avoid
overfitting on the general slice type due to its majority.

IV. EVALUATION
A. Experiment Setup
We conducted our experiments using the POWDER Wireless
testbed, where we simulated an Open Radio Access Network
(O-RAN) environment. In this setup, X-310 USRPs were used
to emulate as Base-Stations(eNBs) connected to a Cloud Node



dense_input | input: | [(None, 9)]
InputLayer | output: | [(None, 9)]
dense | input: (None, 9)
Dense | output: | (None, 64)
dropout | input: | (None, 64)
Dropout | output: | (None, 64)
dense_1 | input: | (None, 64)
Dense | output: | (None, 32)
dropout_1 | input: | (None, 32)
Dropout | output: | (None, 32)
dense_2 | input: | (None, 32)
Dense | output: | (None, 16)
dense 3 | input: | (None, 16)
Dense | output: | (None, 3)

Fig. 7: Classification Model

that formed the Near RT-RIC, and the B210 USRPSs as the
User Equipments (UEs) as shown in Fig. [§] The UEs here
are supposed to act as vehicles in an O-RAN integrated V2X
environment.

E2 -Interface

(Smm

X-310 USRP (eNB) B210 USRP (User Equipment)

E2 -Interface

(“Sum

B210 USRP (User Equipment)

Fig. 8: O-RAN Setup on POWDER testbed

X-310 USRP (eNB)

B. Network Slicing Results

The dataset is trained on the deep learning model and gives an
accuracy of 92% on the training set and 93% on the validation
set as shown in Fig [9]

Although these training metrics show good results with a
smooth increasing accuracy and decreasing loss. The predic-
tions however show a slight underperformance for the high-
bandwidth slice as shown in the confusion matrix Fig. [T0}
With a majority of high-bandwidth points being classified into
general. This performance can be attributed to the disparity in
slice-distribution as shown in Fig. [f] However, the model is
still able to predict Low Latency slices correctly with high
accuracy. This suggests the need for either optimizing the
thresholds or increase in data-points for high bandwidth under
current threshold values.

Training and Validation Accuracy Training and Validation Loss

—— Training Loss
0.92 4
0.30 1 Validation Loss

Loss

— Training Accuracy
0.86 Validation Accuracy 0.16

[} 1 2 3 4 0 1 2 3 4
Epoch Epoch

Fig. 9: Deep Learning Model Training History

Low Latency

High Bandwidth

True label

General

Low Latency General

High Bandwidth
Predicted label

Fig. 10: Confusion Matrix for Predictions on Validation set

V. FUTURE DIRECTIONS

The current disparity in slice-type distribution for our data
shows that the data points of high-bandwidth are over-fitting
towards the general type, however, the results for low-latency
slice clearly show the validity of our model. This disparity can
also be attributed to a large amount of empty values for features
at several time-stamps due to different data collection intervals
as shown in Fig. [f] These empty values were filled in with the
columns’ mean values for the current implementation. Future
work will focus on optimizing how the slice-type labels are
defined as well as collecting our own dataset over the mobile
vehicle endpoints available on the POWDER Platform.

VI. CONCLUSION

This paper has demonstrated the successful implementation of
network slicing based on Deep Learning technique over the O-
RAN architecture for V2X communications. The deployment
of a deep learning technique in predicting network patterns
for network slicing and resource allocations also further helps
to optimize the O-RAN networks efficiency in real-time as
compared to standard rule-based slicing. It also highlights the
advantages of integrating V2X communication into the O-
RAN architecture thus standardizing the V2X architecture and
providing it with benefits of the O-RANSs intelligent control
structure thus further optimizing the V2X network efficiency
and optimizations.
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